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Fast Fourier Transforms (FFT) are widely known as useful tools for the evaluation of spectral data. 
This article discusses the applicability of FFT methods to crystallographic problems. Formulae are 
derived which make it possible to use fast Fourier transforms for the general Fourier summation of 
crystallographic data in all space groups and for the computation of slant planes at arbitrary positions 
in the unit cell. As even moderate resolutions would produce arrays of data too large to fit within internal 
computer memory, they must be kept to an external storage device. The organization of data and the 
resulting time requirements are thoroughly discussed. An ALGOL 60 program has been developed 
with as many redundancies eliminated as possible. An example shows that for a problem of moderate 
size this algorithm is faster by an order of magnitude than those which have traditionally been used. 

Introduction 

Several years ago, Cooley & Tukey (1965) discovered 
the principle of the fast Fourier transform (FFT), an 
effective algorithm for the computation of expressions 
of the form: 

with 

and 

N - - I  

Wk= ~ wj. exp (i2z~jk/N), (1) 
j = 0  

j = 0 ,  1 , . . . , N - 1  

k = 0 ,  1 , . . . , N - 1 .  

For the use of their program, the dimension N of 
the complex array to be transformed must be a power 
of 2; this requirement can always be achieved by filling 
up with zeros. The transformation is then done in steps 
building upon one another. Thus, the computing time 
drops from N z for the straightforward summation to 
2N log2 N. The gain increases rapidly with N; for N =  
32 the ratio is already 3! 

This powerful method stimulated the development 
of the frequency analysis of acoustic vibrations in an 
extraordinary manner (IEEE Transactions, 1967, 1969; 
Cooley, Lewis & Welch, 1969a). The algorithm itself 
was developed in several directions. Besides the radix-2 
algorithms (Gentleman & Sande, 1966; Singleton, 
1968a), mixed-radix algorithms recently appeared al- 
lowing for different values of N (Singleton, 1968b, 
1969). In general, however, the former are still more 
favourable, as they can treat phase factors more effec- 
tively. Assembler coding provides for additional time 
saving in address manipulation. 

Multidimensional transforms can be performed by 
FFT algorithms when the corresponding expressions 
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can be split up into single sums (Singleton, 1969; Bren- 
ner, 1969). For instance, multiple sums of the type" 

he he le 

D(xyz)= E E E 
h = 0  k = 0  I = 0  

x exp[i2rc(hx/N+ky/O+lz/P)] (2) 

can be split up into three single sums" 

he ke 

D(xyz)= ~ exp (i2~zhx/N) . ~ exp (i2~zky/O) 
h = 0  k = 0  

le 

× ~ exp (i2rdz/P). dl, kt. (2a) 
1 = 0  

Each of the single sums can be transformed by the 
FFT, the other indices remaining constant. Bondot 
(1971) describes a combination of this method and 
Cooley & Tukey's algorithm itself. He does not trans- 
form in each dimension separately; the single steps of 
the procedure are prccessed in all dimensions at the 
same time. Equal sets of phase factors are computed 
only once. 

Examples for the application of the FFT to crystal- 
lographic computations are rare (see, e.g., Hoppe, 
Gassman & Zechmeister, 1970), although the phase 
problem forces extensive use of Fourier transforms. 

General procedure for the FFT 
of three-dimensional crystallographic data 

In crystal-structure analysis, the general formula to be 
computed is the following: 

1 he ke le 
Q(xyz ) = -~ 

"h= ° ~=ko l=J° 

x exp [- iZrc(hx/N+ky/O+lz/P)] .  (3) 

In this equation, Fnkz is the Fourier coefficient indexed 
by integer numbers h, k and l; (h,, he), (k,, ke), (l,, le) 

A C 2 8 A  - 9* 
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are the limits of these indices; Q(xyz) is the value of the 
transform at discrete coordinates x, y, and z. N, O, P 
are the number of subdivisions of each row in the three 
directions of the transformed space, and 1/V is a scal- 
ing factor. 

The Beevers-Lipson technique (see e.g., Rollett, 
1965; Stout & Jensen, 1968) is widely used for the 
effective evaluation of these summations. Only one 
independent part of the set of Fourier coefficients has 
to be summed in each dimension; the other parts are 
implicitly provided for by multiplicity factors that can 
be derived from Frieders law and symmetry relations. 

For the application of equation (2), the indices of 
the Fourier coefficients must be positive. In general, 
however, crystallographic data are indexed both posi- 
tively and negatively. By means of the linear trans- 
formations 

h' = h -  ha, (4a) 

and 
k ' = k - k .  , (4b) 

l ' = I - l .  (4c) 

the general expression for the Fourier summation (3) 
can be converted to the form" 

he - ha 

O(xyz) =exp (- i2rch.x/N) . ~ exp ( - i2zrh 'x /N)  
h ' = 0  

k e - k a 

x i exp ( - i2rck ,y /O.  ~. exp (-i2zrk'y/O) 
k ' = 0  

/ e - / .  

x exp ( -  i2zcl.z/P). ~ exp ( -  i2rd'z/P) 
/ ' = 0  

1 
x V " F , ° + , .  ,o+k' .  l . + r -  (5) 

This equation is more comprehensive if we introduce" 

1 1 
F°,r, . . . .  Fh,,+~,,, k,,+k', la+l '= V Fhkl ' (6) 

Fh,k.~ = exp (-- i2~Iaz/P) 
le--  la 

x ~ exp ( - i2rd ' z /P)  o (7a) • F I V k ,  t ,  , 
/ ' = 0  

F~;,~ = exp ( -  i2rckay/O) 
ke  - ka 

x ~ exp ( - i2 rck 'y /O) .  Fn,k,~, 
k ' = 0  

and: 

F~'~ =exp ( -  i2rch,,x/N) 
he l ha 

x ~ exp ( - i2 rch 'x /N) .  F'~;y,. 
h ' = 0  

The last transformation yields the desired result: 

Q(x.rz)= F'x~ . 

(7b) 

(7c) 

(8) 

Equations (7) are of the same form. It is remarkable 
that they do not represent simple FT's:  each of the 
complex numbers in a transformed row remains to be 
multiplied by an additional phase factor dependent on 
its running index. This feature has to be considered in 
the development of a generally applicable procedure 
for the FFT of crystallographic data. 

The equations (6) to (8) suggest a procedure involv- 
ing four discrete steps: (1) The entire space of Fourier 
coefficients o F~,,k,~, is generated. The position of every 
point in this space is indicated by the transformed in- 
dices h', k', a n d / ' .  (2) Rows of coefficients 0 F~,,k,l, with 
common indices h' and k' are written into an auxiliary 
linear array, one at a time. The array is transformed, 
and one by one its elements are multiplied by the ap- 
propriate additional phase factor. As these factors 
depend only on the index of the transformed element, 
they are stored for the whole duration of the second 
step. The transformed elements F~,k,,- replace the un- 
transformed ones, which are no longer needed. (3) Each 
row of Fourier coefficients F£,k,- with equal indices h' 
and z is transformed. The F;,iy: take the storage place 
of the F£,k,z. (4) The F~,;y~ with common indices y and 
z are treated in the same manner. Their place is taken 
by F~,~'~. The final result can be output on a file. 

Slant planes 
Let 

hlx + kl)'+ l~z =p~ (9) 

be the equation of a slant plane laid through the 
oblique coordinate system of a crystal. The transform 
at points (y, z) in this plane is obtained by the com- 
bination of equations (1) and (9) (Rollett, 1965): 

he 

1 ~. exp [- i2rch(p~-k~v-l~z) /(hiN)]  ~O("VZ)plane -~  V t , : h a  

ke  le 

x ~, ~ Fhkt.exp[--i2rc(ky/O+lz/P)].  (10) 
k = k a  l - l a  

With the introduction of equations (4) and (7), this 
becomes: 

he - -ha  

O(yz )p l ane  = ~ exp [- iZzr(h '+h.)  
h' 0 

x ( p l - k l y - l l z ) / ( h l N ) ] .  F~,;rz. (11) 

This equation provides a general tool for the calcula- 
tion of slant planes within the FFT framework. Data 
are transformed twice by means of the standard proce- 
dure outlined above, [equations (6-7b)]. Only the last 
step has to be done separately for each desired point 
(y,z). 

The use of external storage devices 

The need of the entire space of Fourier coefficients re- 
sults in rather high storage requirements. For instance, 
at a given minimum resolution of 0.5 A and cell con- 
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stants of ca. 12 A, each axis has to be divided into 
intervals of 3-~. Simultaneous storing of the real and 
imaginary parts of the Fourier coefficients leads to a 
requirement of 2 x 32 × 32 × 32 = 65536 allocations. 

Keeping this large amount of information in the 
rapid-access storage for the entire time of the calcula- 
tions would be extremely wasteful and in many cases 
even impossible. However, an attempt to decrease by 
symmetry arguments the quantity of numbers to be 
stored would lead to difficulties in principle, as the 
FFT algorithm can transform whole periods only. In 
this work, external storage has been successfully used 
for a general implementation of the procedure out- 
lined above. 

Transportation to and from external media, how- 
ever, is a time-consuming process compared to the cal- 
culations done in core. Even with modern computers, 
where interrupt techniques reduce the core time for a 
transport to the bare access time, extensive use of the 
external storage can make these steps time-determin- 
ing for the whole algorithm. Furthermore, the waiting 
time for output may become unreasonably long. 

For the following more detailed discussion, let us 
assume a right-handed coordinate system. In the very 
beginning, the space defined is occupied by Fourier 
coefficients indexed as Fh,k,r. By successive transforma- 
tions in each row and column they are finally replaced 
by the Fx~'z. Diagrams of this final result are printed 
out for equal heights of z; and are therefore parallel 
to the crystal axes a and b. Different setups can gen- 
erally be achieved by cyclic permutation of the indices 
h', k', and l '  involved. 

In the transformation procedures, rows of points 
with two indices in common are treated. This feature 
suggests transporting them as records to and from the 
external storage. The indexing of these records is linear. 
For one of the transformations however non-neigh- 
bouring records are required. Thus, the storage device 
should have random-access features (e.g., drum or 
disc). In this case, the  preliminary filling with Fourier 
coefficients can be done effectively without any pre- 
liminary sorting of the data. 

At first glance, every Fourier coefficient appears to 
have to be transported to and from the external storage 
device for each of the three transformations. However, 
one plane of Fourier coefficients in the example quoted 
above would comprise only 2 x 32 x 32=2048 num- 
bers. Arrays of this size can easily be handled in com- 
puters of medium size, thus allowing for two trans- 
formations on one transport. 

The sequence of the transformations is arbitrary; 
thus, the direction of the records in the outlined co- 
ordinate system can be chosen freely. This choice and 
the sequence of the three transformations, however, 
contribute very much to the effectiveness of the method. 

For instance, let us assume the l ' ( z ,c )  axis as the 
direction of the records: obviously, the first two trans- 
formations would have to be done in x z  or y z  
planes. In order to obtain one of the finally desired 

x y  planes, all of the records would have to be input 
from disc or drum each time. 

This disadvantage is avoided when the records are 
chosen parallel to one of the axes in the plane later to 
be printed out. Then the second transformation is done 
in the direction of the l ' (z ,  c) axis. After the last trans- 
formation, the x y  planes can be printed without any 
further transportation to or from the auxiliary storage. 

Time requirements 

With the neglect of additions, the computer time for 
the three transformation steps is given by :* 

1. Transformation in x direction: 

t x = O  . P .  t g e t ( 2 m ) + o  . P .  (tFFT(N)+tmul . m )  , (12a) 

2. Transformation in z direction: 

t z = m .  O . ( tvvT(P)+tmul . P ) + O  . P .  tput(2N), (12b) 

and 

3. Transformation in y direction: 

t y = O .  P .  t g e t ( 2 N ) + N .  P .  (tFFT(O)+tmu I . 0 ) .  (12C) 

Rough time values for the Telefunken TR440 com- 
puter are: 

(a) time to put a record on disc: 
/put'~4 msec (for 256 words, linearly mounting); 

(b) time to get a record from disc: 
tget-----18 msec (for 256 words, linearly mounting); 

(c) time for complex multiplication: 
tmu~ ~ 0.08 msec; 

(d) time for FFT (library procedure FO U C O M ,  
Telefunken, 1971) 
tFFT =2"88 + 49-7N log2 m/1000 msec. 

The transformation of a space with 32 x 32 x 32 com- 
plex data points thus would be estimated to take about 
80 sec. Since the time required is independent of the 
quantity of the data, the method can be expected to 
be superior to conventional ones when Fourier trans- 
forms of medium to large data sets are to be calculated. 

An implementation should take care of some highly 
redundant features that the described algorithm has to 
this point: 1. In the first step, the majority of trans- 
formations would have to be carried out on zeros. For 
instance, while the space of coefficients in the example 
comprises about 32000 complex data points, a medi- 
um-sized data set of 1000 independent reflexions in 
an orthorhombic space group would require only 25 % 
of the allotted space. With all input data real, this 
percentage would drop to 13 %. 2. In addition, the 
result obtained is for an entire unit cell. Generally, 
however, only an asymmetric unit is required. Points 

* The calculation assumes that a record stores both the real 
and imaginary parts of a Fourier coefficient. 
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of interest in the rest of the unit cell are easily gen- 
erated by application of the symmetry operations to the 
corresponding points of the asymmetric unit. 

ALGOL program 

A computer-orientated program has been written im- 
plementing an improved version of the described al- 
gorithm for the F F T  of three-dimensional crystal data 
in all space groups (Lange, Stolle & Huttner, 1972). 
A L G O L  60 (Baumann, 1968) was chosen as the coding 
language because of its high documentational value. 
Only the simpler elements of this language have been 
used, which are also available in F O R T R A N .  

An assembler procedure has been used for the F F T  
steps themselves (Telefunken, 1971). It can be replaced 
by any algorithm which calculates one-dimensional 
Fourier transforms; radix-2 algorithms (Barth & Kre- 
mer, 1969; Markel, 1971) can be adopted as well as 
mixed-radix versions (Singleton, 1969). Trigonometric 
functions for phase factors are drawn from cosine 
tables containing an entire period. 

Real and imaginary parts of the Fourier coefficients 
are handled in one record throughout the program. A 
Boolean array notes whether a record exists on the 
background storage or not. Only rows containing at 
least one non-zero element have to be kept and trans- 
formed. 

In the preliminary stage of the process, all the space 
of Fourier coefficients has to be generated. Indices and 
magnitudes of the dependent Fourier coefficients are 
readily calculated by Waser's method (Waser, 1955; 
Wells, 1965), which uses symmetry relationships. In 
order to sort the indexed information properly into 
records, maximum use is made of the rapid access 
storage that is dynamically achievable in ALGOL 60. 
A working array is filled by the images of as many 
records as possible. With all coefficients real (centro- 
symmetric case) the imaginary parts are not stored. 
Whenever the working array is filled, the generated 
records are written into the external storage device to 
adresses kept in a special list. 

The direction of the records was chosen parallel to 
the a axis. The records are transformed first; the second 
and the third transformations are done in the direc- 
tions of the e and b axes respectively. Transformation 
sequences that differ from this pattern are achieved 
by a cyclic permutation of the transformed indices 
h', k '  and l '  involved. 

With all real data, about one half of the transforma- 
tion time of the first step is saved by the simultaneous 
F F T  of two rows (Cooley, Lewis & Welch, 1969b). 
Only the desired rows are transformed for the third 
time. The sequence of their transformation is given by 
the form of output. Special pointer tables keep the 
necessary information for rapid access. 

The option of calculating slant planes has been im- 
plemented in the program for the F F T  of crystal- 
lographic data. Extensive use is made of pointer tables. 

Whenever records are transported into core storage for 
the third transformation, points of the slant planes are 
calculated and stored externally. Completion and out- 
put is done after the finish of all third transformations. 

Table 1 gives some time values for the Fourier trans- 
formation of a medium-sized data set on a TR440 
computer. For a given resolution there is a drop in 
computer time by a factor of about 8. 

Table 1. Example for the F F T  of a crystallographic 
set of  data 

Literature: Huttner & Lange (1972) 
Space group: P2Jc 
Cell constants: 15.5, 8-7, 16.7 A, ,8=90 ° 
Number of data: 2696 
Resolution: <0.3 A 
Limits of summation: x=0.. .0-5,  y=0 . .  1, z=0..0.5 
Z axis chosen as c 

Beevers-Lipson: total transformation time: ~ 17 rain* 

FFT: resulting space of Fourier coefficients: 64 x 32 x 64 points 
theoretical number of records : 32 x 64 

Time values: 
(a) filling disc 

number of non-zero records: 609; time needed : 26.0 sec. 
(b) first transform 

length of records: 64; 
records transformed: 609 (29.73 %); time needed: 18.4 
see. 

(c) second transform 
length of columns: 64 
records transformed : 1344 (65-63 %); time needed : 52-1 
see. 

(d) third transform 
length of rows: 32; 
rows transformed: 1089 (26.59 %); time needed :30"9 sec; 
time for total transformation: 133:2 sec. 

* The Fourier program used was a modified local version 
of an algorithm in ALGOL developed at the University of 
Manchester. 

The authors are indebted to the Deutsche For- 
schungsgemeinschaft for financial support. Computing 
facilities were kindly provided for by the Leibniz 
Rechenzentrum der Bayerischen Akademie der Wissen- 
schaften. 
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The Theory of the Spin-Density Patterson Function 
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A general treatment is given of the derivation of a spin-density Patterson function from unpolarized 
neutron-diffraction data, showing that a peak in the function due to atoms m and n with spins S m, S n has 
a height proportional to S m . S" and is elongated in a direction which bisects these spin directions. The 
elongation is not appreciably affected even when the spin-density distributions of the atoms are highly 
aspherical. 

Introduction 

The essential features of the spin-density Patterson 
function have been described in a previous paper (Wil- 
kinson, 1968). The purpose of the present paper is to 
provide a more precise treatment of certain parts of 
theory in which approximations were previously made. 
The same notation will again be used. 

The Patterson function Q'(u) calculated from un- 
polarized neutron-difl'raction intensities from a single 
crystal is given by 

Q ' (u) = Q (u) - R(u)  

where Q(u) is the scalar-product autocorrelation func- 
tion of the spin density: 

i Y 
Q(u)= ~ ~ 5:i(r) * 5 : j ( - r ) .  

1--3 I--3 

R(u) is the sum of the convolutions of the Fourier 
transform of the appropriate pairs of scattering-vector 
direction-cosine products with terms in the summation 
for Q(u) and is 

t j 
R(u)= ~ ~ (k,kj) • [~ , ( r )  • : X - r ) ] .  

1--3 1--3 

In the previous theory for the evaluation of R(u) it 
was assumed that the form factors for all magnetic 
atoms in the structure could be represented by the 

function exp (-p2k2). The present treatment shows 
that this is an unnecessary approximation, but that the 
main features of the result (i.e. Patterson peak height 
proportional to the scalar product of component spins, 
elongation of peak in direction bisecting spin direc- 
tions) remain unchanged. Expressions for R(u) and 
Q(u) are derived for two and three-dimensional data in 
Appendices 1 and 2. 

Q'(u) for a zone of data measured out to Ik[ = k0 

In Appendix 1 it is shown that for two-dimensional 
data the Patterson peak due to atoms m and n which 
are separated by a distance u"" is 

Q'(u"" + x ) =  Lt {~k2o(Al(2nrko) 
/¢0~ oo 

m , (09m-- 09,) × [S.S", " 1 ~"~,  T - ~ o  Jl ~ N COS 

-S"~S7 cos (2a-(09m+09,))] 

+ f2(2~zrko)S ~":S ~ cos ( 2 a -  (09,, + 09,)) 

• (.5~"(r) • 5~"( -r ) ) } .  

The component functions in this expression require 
some explanation. 

(i) The quantity ~ " ( r ) .  5 % ( - r )  is similar to that 
which appears in the expression for Patterson peaks 
calculated from X-ray intensities. In the two-dimen- 
sional case it represents the convolution of the pro- 


